

Empirical Receivers for Knowledge-Assisted STAP

Douglas B. Williams
Georgia Institute of Technology
School of Electrical & Computer Engineering
Center for Signal & Image Processing

KASSPER Workshop April 6, 2004

Detectors for STAP

- Typical design approach:
 - Assume a model for data
 - Design an optimal detector
- Statistical modeling of clutter and interference is a hard problem.
- Characteristics can vary greatly from one situation to another.
- Using an explicit model limits flexibility by imposing constraints on expected data structure.
- Performance can degrade significantly when data does not match the model.

Universal Classification

Seminal work by Ziv ('88) and Gutman ('89)

- Theoretical basis: 'method of types' and universal source codes
 - Based on empirical statistics of observed data
 - Independent of source statistics
 - Performance improves with more data
- Original work required training data for each hypothesis
- Has been applied to a range of problems:
 - Modulation classification
 - Image recognition
 - Signal detection (primarily for communications)

Method of Types

- Have observations r(0), ..., r(L-1) from a finite alphabet of values $A = \{a_1, ..., a_N\}$.
- A *type* is the pdf estimate generated by the normalized histogram:

$$\hat{P}_r(a_n) = \frac{1}{N} \prod_{l=0}^{L \square 1} I(r(l) = a_n),$$

where I(.) is the indicator function.

• For i.i.d. data the probability of a given sequence is

$$\Pr[\mathbf{r} = \{r(0), \dots r(L \square 1)\}] = \prod_{l=0}^{L\square 1} P_r(r(l))$$

Method of Types (cont.)

This probability can be written as

$$\ln \Pr[\mathbf{r}] = \prod L \left[H(\hat{P}_r) + D(\hat{P}_r \| P_r) \right]$$
entropy:
$$H(P) = \prod_{n=1}^{N} P(a_n) \ln P(a_n)$$

$$= 1$$

Kullback-Leibler distance:

$$D(P_1||P_0) = \prod_{n=1}^{N} P_1(a_n) \ln \frac{P_1(a_n)}{P_0(a_n)}$$

- K-L distance is nonnegative and zero only when $P_0 = P_1$.
 - \square The type estimator is the maximum likelihood estimator of P_r .

Detection Algorithm

- Makes no assumptions about probability distributions
- Provably optimal
- Let $\tilde{\mathbf{r}}$ denote training data of length \tilde{L} with some unknown distribution P.
- Derive a generalized likelihood ratio test to determine if observed data **r** of length *L* has distribution *P* or a different distribution *Q*.

$$\ln \Box(\mathbf{r}) = \ln \frac{\max_{P,Q} P(\mathbf{r})Q(\tilde{\mathbf{r}})}{\max_{P} P(\mathbf{r})P(\tilde{\mathbf{r}})}$$

Detection Algorithm (cont.)

- A type is the maximum likelihood estimate of the probability distribution.
- Substituting types into the likelihood ratio and simplifying yields

$$\ln \Box (\mathbf{r}) = LD(\hat{P}_r \| \hat{P}_{r,\tilde{r}}) + \tilde{L}D(\hat{P}_{\tilde{r}} \| \hat{P}_{r,\tilde{r}})$$

- K-L distances are small when the training and observed data are from same distribution, large otherwise.
- Define M_0 to be model where distributions match, and M_1 to be where they do not.

Detection Algorithm (cont.)

The decision rule becomes

$$\frac{1}{L}\ln \left[\left(\mathbf{r} \right) \right] < L$$

- Can show that
 - False-alarm probability given by $\lim_{L\sqcap} \frac{1}{L} P_{FA} \prod \prod_{L} P_{FA}$
 - Among all training data-based tests with this P_{FA} , this one has the minimum probability of miss.
- Two-sided GLRT:

$$D(\hat{P}_{r}\|\hat{P}_{r,\tilde{r}_{0}}) + \frac{\tilde{L}}{L}D(\hat{P}_{\tilde{r}_{0}}\|\hat{P}_{r,\tilde{r}_{0}}) > D(\hat{P}_{r}\|\hat{P}_{r,\tilde{r}_{1}}) + \frac{\tilde{L}}{L}D(\hat{P}_{\tilde{r}_{1}}\|\hat{P}_{r,\tilde{r}_{1}})$$

Typical Empirical Detector

'Training-Free' Empirical Detector

Where to from here?

Goals

- Design empirical detectors for STAP application
- Use prior knowledge to make 'training-free.'
- Computationally efficient, data-efficient, versatile, and data-driven

Questions

- What information is most useful for estimating types directly from test data?
- How does overall performance compare?